(9) A relational model of program correctness

(Sec. 8)

The book "**Denotational Engineering**" may be downloaded from: https://moznainaczej.com.pl/what-has-been-done/the-book

> Andrzej Jacek Blikle March 29th, 2025

Chain-complete partially ordered sets

 \subseteq : Rel(A,A) = {R | R \subseteq A x A} ordering relation in A

DEF. partial order:

 $a \sqsubseteq a$ if $a \sqsubseteq b$ and $b \sqsubseteq c$ then $a \sqsubseteq c$ if $a \sqsubseteq b$ and $b \sqsubseteq a$ then a = b reflexivity transitivity weak antisymmetricity

b : B is called the least element in $B \subseteq A$ if $(\forall b' : B) b \sqsubseteq b'$ a : A is called the upper bound of $B \subseteq A$, if $(\forall b : B) b \sqsubseteq a$

 $a_1 \sqsubseteq a_2 \sqsubseteq a_3 \sqsubseteq \dots$ a chain $lim(a_i \mid i = 1, 2, \dots)$ (def) least upper bound (if exists)

DEF. (A, \sqsubseteq , Φ) is called a chain-complete partially ordered set (CPO) if:

- 1. every chain in A has a limit,
- 2. Φ is the least element of A

Continuous functions in CPO's

 $(A, \sqsubseteq, \Phi) - CPO$

DEF. $f : A \mapsto A$ is continuous if

- 1. if $a_1 \sqsubseteq a_2 \sqsubseteq \dots$ then $f.a_1 \sqsubseteq f.a_2 \sqsubseteq \dots$,
- 2. if $a_1 \sqsubseteq a_2 \sqsubseteq \dots$ has a limit then $f.a_1 \sqsubseteq f.a_2 \sqsubseteq \dots$ has a limit,
- 3. $\lim(f.a_1 \sqsubseteq f.a_2 \sqsubseteq ...) = f.[\lim(a_1 \sqsubseteq a_2 \sqsubseteq ...)].$

A composition of continuous functions is continuous.

Kleene's fixed-point theorem

If
$$f : A \mapsto A$$
 is continuous, then the least solution of $x = f.x$
exists and equals $\lim(f^n.\Phi \mid n = 0, 1, 2, ...)$.

A fundament for recursive definitions of languages, functions and domains

Cartesian CPO's

 $(A, \sqsubseteq, \Phi) - a CPO$

 $(A^{cn}, \sqsubseteq^{cn}, \Phi^{cn})$ — a Cartesian CPO of tuples (a-1,...a-n) \sqsubseteq^{cn} (b-1,...,b-n) iff(def) a-i \sqsubseteq b-i for i = 1;n

f: $A^{cn} \mapsto A$ is continuous in first argument iff(def) f.(x, a-2,...,a-n): $A \mapsto A$ is continuous for any tuple (a-2,...,a-n) f: $A^{cn} \mapsto A$ is continuous iff(def) is continuous in all arguments

Lemma if f-i : $A^{cn} \mapsto A$ for i = 1;n are continuous then f(a-1,...,a-n) = (f-1(a-1,...,a-n),...,f-n(a-1,...,a-n)) is continuous

A CPO of formal languages

 $\begin{array}{ll} \mathsf{A}=\{a_1,\ldots,a_n\} & -\text{ an alphabet} \\ \mathsf{Lan}(\mathsf{A})=\{\mathsf{L}\mid\mathsf{L}\subseteq\mathsf{A}^*\} & -\text{ the set of all languages over }\mathsf{A} \\ (\mathsf{Lan}(\mathsf{A}),\subseteq,\{\}) & -\mathsf{CPO} \text{ of formal languages over }\mathsf{A} \end{array}$

All function defined above, and union, are <u>continuous</u>

Associativity and distributivity

 $(P Q) L = P (Q L) \qquad \text{will be written } P Q L$ $(P | Q) L = (P L) | (Q L) \qquad \text{will be written } PL | QL$

Equational grammars (example)

car : Character = {a,...,z,0,...,9}
ide : Identifier = Character | Character © Identifier
exp : Expression = Identifier | {(} © Expression © {+} © Expression © {)}

Theorem Equational (polynomial) grammars are equivalent to Chomsky's context-free grammars and Backus-Naur grammars.

A CPO of binary relations

```
Rel.(A, A) = {R | R \subseteq A x A}
(Rel(A, A), \subseteq, { } ) — CPO of binary relations
[B] = {(b, b) | b:B}; B \subseteq A — identity relations (function)
(a, b) : R will be written as a R b
P, R : Rel(A,A)
P • R = {(a, c) | (∃b:B) (a P b & b R c)} — composition
R<sup>0</sup> = [A]
R<sup>n</sup> = R • R<sup>n-1</sup> for n > 0
R<sup>+</sup> = R<sup>1</sup> | R<sup>2</sup> | ...
R<sup>*</sup> = R<sup>+</sup> | R<sup>0</sup>
```

All function defined above, and union, are continuous

Associativityanddistributivityover union(P R) Q = P(R Q)will be writtenP R Q(P | R) Q = (P Q) | (R Q)will be writtenP Q | R Q

If P, R – functions, then P \bullet R – function

A CPO of domains

(Domain, \subseteq , { }) — the Cohn's CPO of domains

DEF (M.P. Cohn)

(1) { }, Identifier, Integer, Character, ... belong to Domain

- (2) Domain is closed under all our domain operations (see below)
- (2) Domain is closed under enumerable unions of sets

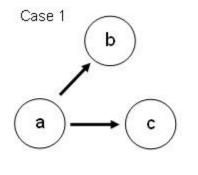
A B A ∩ B A x B A ^{cn} A ^{c+}	 set-theoretic union set-theoretic intersection Cartesian product Cartesian n-th power Cartesian plus-iteration 	continuous and noncontinuous domain constructors
A ^{c∗} FinSub.A	 Cartesian star-iteration the set of all finite subsets 	
$A \Rightarrow B$ A - B	 — the set of all mappings including the empty mapping — set-theoretic difference red indicates non-continuity 	
Sub.A $A \rightarrow B$	 — the set of all subsets — the set of all functions from A to B 	
$A \rightarrow B$ $A \rightarrow B$ Rel.(A,B)	 — the set of all total functions from A to B — the set of all relations between A and B 	

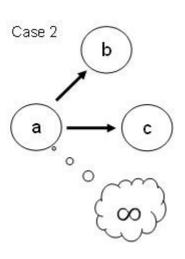
Binary relations

S – a set of states Rel.(S, S) = {R | $R \subseteq S \times S$ } a R b means (a,b) : R

 $A \subseteq S$ [A] = {(s, s) | s : A} – a subset of identity

Two interpretations of a R b & a R c





In this model we can't distinguish between these two situations

We can describe abortion if states may carry errors.

 $p: S \mapsto \{tt, ff, ee\}$ a 3-valued predicate; ee – error or ? $C = \{s \mid p.s = tt\}$ $\neg C = \{s \mid p.s = ff\}$ $(C, \neg C)$ represents p unambiguously

Three composition operations (definitions)

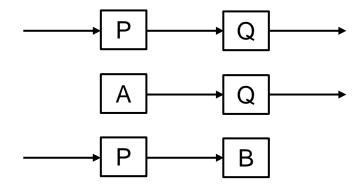
 $P, Q : Rel.(S, S) \\ A \subseteq S$

Sequential compositions

$$P \bullet Q = \{ (a,b) \mid (\exists c) a P c and c A \bullet Q = \{ b \mid (\exists a : A) a Q b \}$$

 $P \bullet B = \{ a \mid (\exists b : B) a P b \}$

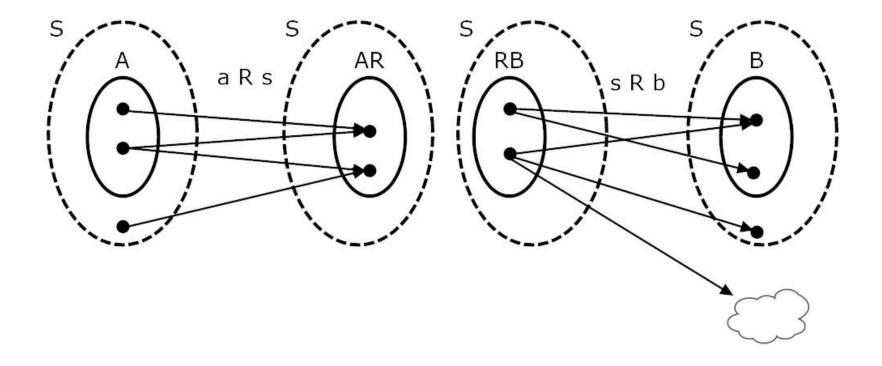
- Q b} is continuous in (Rel.(S, S), \subseteq , Φ)
- outputs of Q for inputs in A
- inputs of P with outputs in B



- P Q to be written PQ
- A Q to be written AQ
- P B to be written PB

(AR) | (BR) to be written AR | BR

Composition operations (interpretations)



Composition operations

(basic properties)

For P, Q, R : Rel.(S, S) and A, B, C \subseteq S

associativity P(QR) = (PQ)R A(RQ) = (AR)Q(RQ)B = R(QB)

 $\begin{array}{l} \text{distributivity} \\ (A \mid B) \mid R = (AR) \mid (BR) \\ A (R \mid Q) = (AR) \mid (AQ) \end{array}$

monotonicity

if $A \subseteq B$ then $AR \subseteq BR$ if $R \subseteq Q$ then $AR \subseteq AQ$ $[A]B = A \cap B$ $A[B] = A \cap B$ $(A \cap B)R = A [B] R$ $R(A \cap B) = R [A] B$ $(A \cap B)R \subseteq C \text{ is equivalent to } A[B]R \subseteq C$ if $A \subseteq [B]RC$ then $(A \cap B) \subseteq RC$

The least solution of the fixed-point equation $P = [C] RP | [\neg C]$ equals ([C] R)*[¬C] while ([C], [¬C]) do R od

Structural constructors of nondeterministic programs

Definitions:

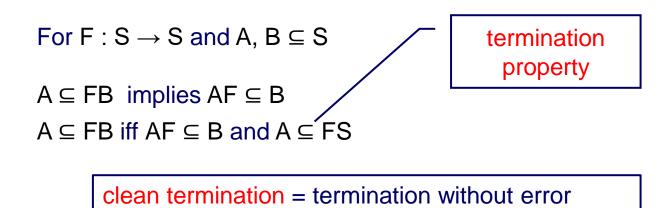
P; Q = $P \bullet Q$ if (C, \neg C) then P else Q fi = [C]P | [\neg C]Q while (C, \neg C) do P od = ([C]P)*[\neg C]

Partial and total correctness

- AR ⊆ B partial correctness of R for precondition A and postcondition B; (\forall a:A) if (\exists b) aRb, then b:B
- $A \subseteq RB$ weak total correctness of R for precondition A and postcondition B; (\forall a:A) (\exists b) aRb and b:B

but there may exist b1 that a R b1 and b1 /: B (the weakness)

For functions weak total correctness = strong total correctness



Non-decidability of termination property

Does the following program terminates for all n (Collatz hypothesis 1937)?

```
x := n;

while x > 1

do

if x mod 2 = 0 then x := x/2 else x := 3x + 1 fi

od
```

It has been proved that it terminates for $n < 5^{*}2^{68}$.

Clean total correctness of while Auxiliary concepts

ograniczona powtarzalność

 $F: S \to S$ has a limited replicability in a set $N \subseteq S$ if there is no infinite sequence

s, F.s, F.(F.s),... in N.

E.g. Sin.[x := x-1] : S \rightarrow S has limited replicability in the set of states N = {sta | sta.x > 0}

dobrze ufundowany A partially ordered set (U, >) is said to be a well-founded set, if there is no infinite decreasing sequence in it, i.e., a sequence $u_1 > u_2 > ...$

Lemma 8.7.2-1

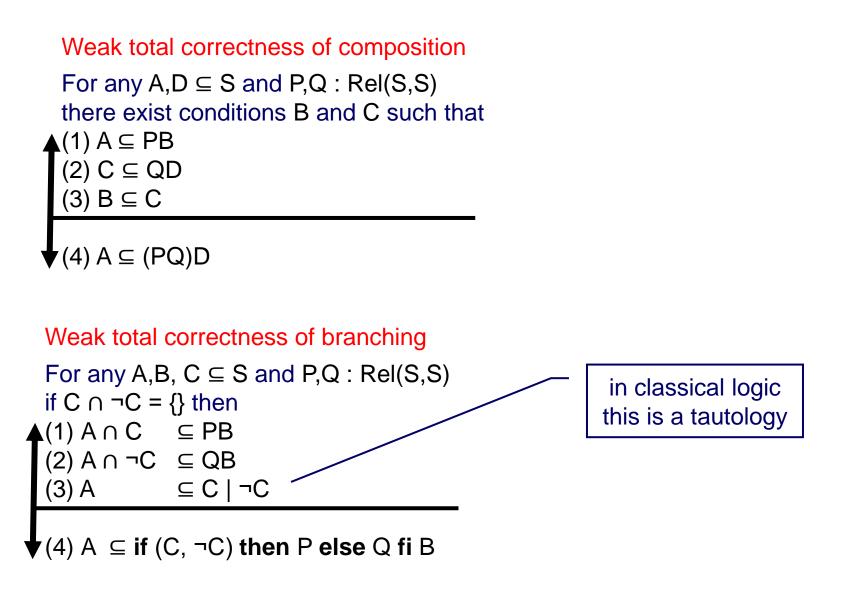
If there exists a well founded set (U, <) and a function $K : \mathbb{N} \mapsto U$ such that for any a : N, F.a = !, F.a : N and

K.a > K.(F.b)

then F has limited replicability in N.

A.Blikle - Denotational Engineering; part 9 (20)

Proof rules for two structural constructors



Proof rule for deterministic while-do-od

```
For any A,B,N \subseteq S and any function F : S \rightarrow S,
and any disjoint C,\negC \subseteq S
(1) A \subseteq N
(2) N \subseteq C | \negC
(3) N \cap \negC \subseteq B
(4) N \cap C \subseteq FN (clean total correctness of F)
(5) [C]F has limited replicability in N
```

(6) $A \subseteq$ while (C, \neg C) do F od B

Proof rule for simple recursion

If F is the least solution of the equation X = HXT | E where H, T, and E are functions and the domains of H and E are disjoint, then the following rule holds:

```
(1) (\forall Q) (AQ \subseteq B implies A(HQT) \subseteq B)
(2) AE \subseteq B
(3) A \subseteq FS
```

(4) $A \subseteq FB$

